The Distribution of Elongation Factor-1 Alpha (EF-1a), Elongation Factor-Like (EFL), and a Non-Canonical Genetic Code in the Ulvophyceae: Discrete Genetic Characters Support a Consistent Phylogenetic Framework
نویسندگان
چکیده
The systematics of the green algal class Ulvophyceae have been difficult to resolve with ultrastructural and molecular phylogenetic analyses. Therefore, we investigated relationships among ulvophycean orders by determining the distribution of two discrete genetic characters previously identified only in the order Dasycladales. First, Acetabularia acetabulum uses the core translation GTPase Elongation Factor 1a (EF-1a) while most Chlorophyta instead possess the related GTPase Elongation Factor-Like (EFL). Second, the nuclear genomes of dasycladaleans A. acetabulum and Batophora oerstedii use a rare non-canonical genetic code in which the canonical termination codons TAA and TAG instead encode glutamine. Representatives of Ulvales and Ulotrichales were found to encode EFL, while Caulerpales, Dasycladales, Siphonocladales, and Ignatius tetrasporus were found to encode EF-1a, in congruence with the two major lineages previously proposed for the Ulvophyceae. The EF-1a of I. tetrasporus supports its relationship with Caulerpales/Dasycladales/Siphonocladales, in agreement with ultrastructural evidence, but contrary to certain small subunit rRNA analyses that place it with Ulvales/Ulotrichales. The same non-canonical genetic code previously described in A. acetabulum was observed in EF-1a sequences from Parvocaulis pusillus (Dasycladales), Chaetomorpha coliformis, and Cladophora cf. crinalis (Siphonocladales), whereas Caulerpales use the universal code. This supports a sister relationship between Siphonocladales and Dasycladales and further refines our understanding of ulvophycean phylogeny.
منابع مشابه
A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1alpha.
Translation elongation factor 1alpha (EF-1alpha, or EF-Tu in bacteria) is a highly conserved core component of the translation machinery that is shared by all cellular life. It is part of a large superfamily of GTPases that are involved in translation initiation, elongation, and termination, as well as several other cellular functions. Eukaryotic EF-1alpha (eEF-1alpha) is well studied and widel...
متن کاملDirect phylogenetic evidence for lateral transfer of elongation factor-like gene.
Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1alpha (EF-1alpha), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of "EFL-containing" lineages within "EF-1alpha-containing" lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, ...
متن کاملCharacterisation of a non-canonical genetic code in the oxymonad Streblomastix strix.
The genetic code is one of the most highly conserved characters in living organisms. Only a small number of genomes have evolved slight variations on the code, and these non-canonical codes are instrumental in understanding the selective pressures maintaining the code. Here, we describe a new case of a non-canonical genetic code from the oxymonad flagellate Streblomastix strix. We have sequence...
متن کاملEnvironmental PCR survey to determine the distribution of a non-canonical genetic code in uncultivable oxymonads.
The universal genetic code is conserved throughout most living systems, but a non-canonical code where TAA and TAG encode glutamine has evolved in several eukaryotes, including oxymonad protists. Most oxymonads are uncultivable, so environmental RT-PCR and PCR was used to examine the distribution of this rare character. A total of 253 unique isolates of four protein-coding genes were sampled fr...
متن کاملA Complex Distribution of Elongation Family GTPases EF1A and EFL in Basal Alveolate Lineages
Translation elongation factor-1 alpha (EF1A) and the related GTPase EF-like (EFL) are two proteins with a complex mutually exclusive distribution across the tree of eukaryotes. Recent surveys revealed that the distribution of the two GTPases in even closely related taxa is frequently at odds with their phylogenetic relationships. Here, we investigate the distribution of EF1A and EFL in the alve...
متن کامل